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ABSTRACT

A mathematical model taking into
account small (and constant)
gravitational levels is developed for
vaporization of an isolated liquid
droplet suspended in a stagnant
atmosphere. A goal of the present
analysis is to see how small

gravitational levels affect droplet
gasification characteristics. Attention

is focused upon determining the
effects on gas-phase phenomena. The
conservation equations are normalized
and nondimensionalized, and a small
parameter that accounts for the effects
of gravity is identified. This parameter
is the square of the inverse of a Froude

number based on the gravitational
acceleration, the droplet radius, and a
characteristic gas-phase velocity at the
droplet surface. Asymptotic analyses
are developed in terms of this
parameter.

In the analyses, different spatial
regions are identified. Near a droplet,
gravitational effects are negligible in
the first approximation, and the

flowfield is spherically symmetric to
the leading order. Analysis shows,
however, that outer zones exist where
gravitational effects cannot be

neglected; it is expected that a
stagnation point will be present in an
outer zone that is not present when
gravity is totally absent. The leading-
order and higher-order differential
equations for each zone are derived
and solved. The solutions allow the

effects of gravity on vaporization rates
and temperature, velocity and species

fields to be determined.

NOMENCLATURE

D mass diffusion coefficient
• internal energy

N

i - P/p)
l=1

i normalized gravitational vector

F r Froude number (-- U. [._)

g gravitational acceleration

L heat of vaporization

Le Lewis number (= _'s/(psCpDg))

Ma Newtonian Math number
m evaporation rate
P gas-phase pressure
R instantaneous droplet radius

Re Reynolds number (= UsR/Vg,.)

gas constant

Sc Schmidt number (= vs, -/Dg,.)

u gas-phase velocity
T gas-phase temperature
U s radial velocity at the surface of

Pd k,
the droplet (= _-_-_)

r$---

Vi diffusion velocity of species i

Yi mass fraction of species i

z contracted radial coordinate

(=eNr)

11 contracted radial coordinate

(=egr)

x stress tensor



e Richardson number (= gR/U_)

viscous dissipation of

energy

y ratio of specific heats

(= Cp / Cv)

v kinematic viscosity

dynamic viscosity

p gas-phase density

Subscripts and Superscripts

* dimensional quantity

- outer expansion variable (zone II)
^ outer expansion variable (zone III)

g gas phase
d liquid phase
r radial direction

s droplet surface
0 leading order quantity
1 higher order quantity
** far field state

INTRODUCTION

The last few decades have seen an

increasing interest in theory and
experiments on evaporation and
combustion of a liquid droplet. This
interest reflects the importance of this
area to the understanding of the
fundamentals of combustion science. It

also reflects the fact that a significant

portion of current practical
applications use liquid fuels as a source
of energy due to convenience in
transportation and storage. In most of
these applications spray combustion is
used, where liquid fuel would exist as
droplets inside a combustion chamber.

A detailed study of spray combustion is
difficult due to the complexity of
interactions between droplets. One
logical way to gain an understanding
of the general behavior of spray
phenomena is to study droplet
vaporization and/or combustion under
well-controlled conditions. When

experiment and theory agree for

simplified situations, predictions may
be made with increased confidence for

more complex cases where accurate
experimental data may not exist. For
this reason, many studies have focused

upon isolated droplets undergoing
spherically symmetrical vaporization
with and without combustion.

Reducing the acceleration of gravity to
negligible levels is one of the most
critical conditions for isolated droplet

experiments that strive for spherical
symmetry. Based on this condition, the
spherically symmetric vaporization
and combustion assumption can be

applied provided that there is no forced
convection or any interaction between

the droplet and its environment other
than heat and mass transfer. However,

reducing the gravitational
acceleration is not a simple task and a
nonzero effective gravity level is
invariably present in these type of

experiments. The effects of small
gravitational levels on droplet
phe_nomena are largely unknown.
Therefore, studies to model the effects

of gravity on the vaporization and
combustion of isolated droplets are
warranted. These studies can increase

understanding of the importance of
small buoyancy levels and in turn will

help in the interpretation of results
from microgravity experiments.

In this study, we will develop a
mathematical model using asymptotic

expansions for an isolated liquid
droplet suspended in a stagnant
oxidizing atmosphere which undergoes
diffusion dominated vaporization,

taking into account gravity effects. In
many recent theoretical droplet
models, buoyancy effects have been

neglected. In contrast, gravity levels
are never zero in experiments. For
example, the effective gravity level
can be reduced to 10 .6 m/s 2 (at best) in

the space shuttle (though accelerations

of about 10 -3 m/s 2 are more typical), to

10 -5 m/s 2 in drop-towers, and to 10-3

m/s 2 in a drop-tube apparatus I (Wang,
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D. and Shaw, B. D., 1991). Depending on
the droplet diameter these gravity
levels can be important and might
significantly affect outcomes of the
experiments. There are quite a few
published articles that cover various

aspect of droplet evaporation and
combustion, but there is a no published
source that looked at the buoyancy
effects within this frame work. In this

study, we hope to shed light on this
factor and provide a basic
understanding of its importance.

THE GOVERNING EQUATIONS

The dimensional governing equations
can be written as follows :

/)p"/Ot"+ V. (p'_')= 0 (,=_,at_)

(,,poet,=)

p'_e'/at" + p'fi'. Ve"

= V.(Z.'VT')- P'(V.u') ( energy )

p'_)fi'//)t"+ p'fi'._a"

= _ + (¢-p:)g.,mome:atum )

p* -- p*¢_']',* ( equ=tlon of state )

where:
T

h; = h; ° + j" C_,,i dT*
T°

Let VO = p: g"

p* = p" -q>

These equations will be

nondimensionalized by using the
following variables :

u" p" T"
U = u; , p= --=-,

• pill,

r" P" L"

r = R--r , P = p--_., L = CpT-----_.

D = _ , g = E (U_2/R.)=

where Us* is the radial velocity at the

surface of a droplet undergoing purely
spherically symmetrical combustion in
the absence of gravity.

ASSUMPTIONS

For a liquid fuel droplet vaporizing in an
oxidizing atmosphere of an insoluble

gaseous species, the above equations are
simplified according to the following
assumptions :

Quasi-steady state vaporization, so the

time-dependent terms can be neglected.
Taking the molecular weights and the
specific heats to be constants, and the

product pD to be constant. Constant gas-

phase transport properties. Lewis and
Schmidt numbers are constants. Perfect

gas. Single fuel species droplet. No spray
effects, that is the liquid fuel droplet is
isolated and suspended in a stagnant
environment. Constant thermodynamic
pressure. Constant and uniform droplet
temperature. The Newtonian Mach

number is small, M2<< I. Fick's law for

mass diffusion ( V i = -DVlnYi) holds.

Using these assumptions as well as the
nondimensional variables allows the
governing equations to be
nondimensionalized as follows:

V. (p'U) --'-- 0 (conlinulty)



Re Sc p0. VYI

= _2yi (species)

Re Sc pfi. VT- Le V2T

= (Y-1)M2(_ + u.Vp) {_)

p_ _ + VP
• Ma 2

Re

P = pT (state)

The dimensionless boundary conditions
are :

at r=l

u 0 =0

T= T s

N

_Yt = 1
1=!

y - 1 _, TbT s

= ( Yls " 1)
Re Sc Ur

, D

_0___ = ReScu r L

s Le D

andasr ---) oo

Ur--_O

ue_ 0

Yl _ Yl.

T_I

p_l

VP

ANALYSIS TECHNIQUE

The technique of matched asymptotic
expansions will be used as a tool to
study the effects of gravity on the flow
variables during the evaporation of a
liquid fuel droplet.

Them have been a number of studies of

droplet evaporation and combustion
using this perturbation technique. For

example, Fendell, Spankle and Dodson 2
(1966) used a singular perturbation
approach to consider droplet
combustion with convective flow field
that is entirely in the Stokes regime. A

Reynolds number was used as their
small parameter of expansion. Fendell,
Coats and Smith also studied droplet

vaporization in a slow, compressible
and viscous flow 3. Kassoy et al. 4 (1966),

studied compressible low Reynolds
number flow around a sphere. They
derived inner and outer expansions for
the flow variables in terms of the

temperature difference, Reynolds
number and the free stream Mach

number. Acrivos and Taylor 5 derived

an expansion in terms of a small

temperature difference between a
sphere and free stream and calculated
the average Nusselt number of the
incompressible flow over a sphere
with a Stokes velocity profile. Gogos et

al. 6 studied evaporation of a fuel

droplet with a strong evaporation-
induced radial velocity while

undergoing slow translation. They
introduced the translation as a

perturbation to an otherwise
stationary droplet. Gogos et al. have
also considered combustion of droplets

undergoing slow translation 7.

Mahoney $, Fendell 9, and Sate 10 have

presented asymptotic analyses of
natural convection heat transfer from

rigid spheres assuming that the
Grashof number is small, while Hieber

and Gebhart 1 I studied mixed

convection about rigid spheres in the

limit of small gravity effects.



In the model presented here, a quasi-

steady state assumption is uscd because
of the fact that the ratio between the

densities of the gas-phase and of the

droplet is small 0(10"3). Matched

asymptotic expansions are used based

on a small parameter identifiedas the

ratio of the inertia force to the gravity
force. This parameter is the inverse of

the Froude number (U's/_g*R*)

squared, where U*s is the droplet

surface-velocity, R is the instantaneous

droplet radius, and g* is the gravity

acceleration. This parameter is the
variable _ that appears in the
dimensionless momentum equation.

PHYSICAL CONSIDERATIONS

An order-of-magnitude analysis of the
governing equations indicated the
relative importance of each term in
the equations. It was found that the
order of magnitude of the non-
dimensional gravity term in the
momentum equation was a useful guide
to distinguish the different governing
physical characteristics. This term was
equal to the reciprocal of the Froude
number squared and is denoted as

E = g'R/U: 2, where _<<1. For typical

situations, a 1 mm droplet has values of

ranges from 10-4 in drop-tube

apparatus to 10-_ in space shuttle
experiments. In order to study the flow

field around a droplet, the governing
equations have to be solved. These
equations in their original form are

very complex. Simplifying assumptions
have to be made in order for one to

approach these equations analytically.
For instance; the thermodynamic
pressure was considered to be constant
since characteristic Mach numbers

(M) for the flow are significantly less
than unity. The pressure gradient in
the momentum equation, on the other
hand, can not be neglected since it is

divided by (M 2) which is very small.

The non-dimensional equation of state
is then simply pT = 1. In the energy

equation the second term of the right
hand side can be neglected. This
dissipation term is of O(M2), where M
<< 1. Taking the Lewis number as
constant will allow us to have

pD=constant.

A physical approach was used to deduce

that this problem is singular for E _ O,

as well as the expansions for inner and

outer regions. In an inner region near
the droplet (termed zone (1)), the first

term in the expansion is the
spherically symmetric solution. This
solution will prevail in the absence of
any significant gravity effects and the
flowfield will only vary in the radial
direction. For the next term in the

expansion, a higher-order correction

of O(g) will be applicable to the
velocity field, which is a result of the

body force term. From the continuity
equation it can be seen that the order

:of magnitude change in density is as
large as the change in velocity. From
the equation of state, the order of

magnitude changes in temperature
will be as large as the changes in
density. Therefore, it was concluded
that the O(g) correction is applicable

to all of the flow variables (velocity,
density, mass fraction, temperature
and pressure). To locate zone (II) i.e.,
where gravity is important, we had to

determine where the spherically-
symmetrical solution breaks down.

From the leading-order continuity
equation, the velocity field was
obtained. This velocity field was then
used in the radial momentum equation
to estimate where the largest term of
the equation becomes of the same order

as the gravity term, i.e. O(g/r). It was

found that the largest term of the
inertial, pressure and viscous terms is

of O(l/r5). Thus, it was concluded that

the negligible buoyancy assumption is

no longer valid when (1/r 4) -£, and

that gravity should be accounted for
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when r - 1/el/4. The rescaled radial

coordinate z = E1/4r was introduced and

expansions for all flow variables were
obtained.

SOLUTION METHOD

The method of matched asymptotic

expansions is used in this study to solve
the governing equations that describe
the flow field around the droplet.

Inner _and outer expansions are
derived for each of the flow variables,

(velocity, density, mass fraction,
temperature and pressure), in terms of
a small parameter (E). The solutions
are typically developed up to the
second terms of the expansions. The
basic simplification of the governing

equations comes from the assumption
that E;<<I where as stated above, the

spherically symmetric assumption is

only applicable when (1/r 4)>> 1_,

since when (1/r 4) = e the effect of

buoy_ancy would be felt in the flow
field and this will invalidate this

assumption.

In zone ( I ), the gravity term suggests
an O(E) correction to the velocity field.
This correction is also applicable to the

other dependent variables.

The inner expansions valid near the

droplet are as follows :

u(r,0;e) = u o + eul +.....

p(r,0; e) = Po + ePl + ....

Y(r,0;e)= Yo + eY_ + ....

T(r,0;e) = T O +eTl + ....

P(r,0;e) = Po ÷ePl + ....

where :

u 1 = [url0(r) + urn(r)cosOl_r

+ [u011(r)sin0]ee

Pl = Plo(r) + Pu (r) cos0

Yt = Y1o(r) + Yn (r)c°s0

T t = Tlo(r) + Tn(r) cos0

P1 = Plo( r)+ P11 cos0

Substituting the above expansions into
the governing equations produces the
following equations:

Order e0:

V. (pofio) = 0

Re Sc pofio . f_'o = V2Yo

ReSt pofio . 03.,0 = _,2To
Le

Pofio. Vfio = "0M--F_-a°+ Re

poTo = 1

Boundary conditions :
atr = 1

Uro -'- 1

UO0 = 0

To=T,

Y = exp- _'-1_ Tbt ' )J

= Re Sc uro (y,. 1)

, D

ReScL
, = LeD Uro



The analytical solution to 1he above
spherically symmetric ordinary
differential equations is •

m o
Ur0 =

P0 r2

1
Po =

To

T0=Ts- L + L[exp(Re_em0 (1-1))]

8
+_

3Re

2 m°2 I- 2mo 2 dTo
"_-o r3 dr

r •
where m o is the integration constant

Re Sc ((pofil + plfio). VYo

+ Po%-VY1 ) = _2y_

Re Sc ((peril + Pzfio) _1"o
Le

+ perle . VTt)= V2T t

The above equations will actually consist of
two sets of equations:

_d_'[r2(P0Url0 +Pl0Ur0)] : 0 (contin_ty)

m0dUrl0+ml0dur O+ 1 dP10 "
r2 dr r2 dr Ma 2 dr

- "3 dr z 3drY, r jj(momentum)

ReSc(m0 dT10 ml0 dT0
Le [,r 2 dr ° r 2 dr J

r2 r2 dr = 0 (energy)

ReSc_70 dYl°dr4 ml° dc_r°)r2

1 d (r 2 o
Plo = -po2T10

atr = 1

Yll0 = 0

S

T10 = 0

(species)

(state)

 -sc[u, oO-Yo)+UrOY,O]

ReScL

= Le D Url0

Po%. Vfil + (Pofit + P_fio). Vfio

_, _ .'_
- Ma 2 + + (Po-l)iRe

Pl - " Tt



Applying the method of the integrating

factor to the energy and species equations,

we get:

Le C 1 '
T10(r) = - ml° (T, - L) +

m 0 ReScm0

ReSc L(mlo_ e [ReSc( m

where C 1 and CI1 are constants

i

y10(r) = _ml0 ._ C2
m0 ReScm0

where C 2 ind C22 are oonsiantl

Evaporation Rate Modification:

Let IX = cosO

Then the evaporation rate can be defined

by: ffa = 2mr2_PUrdg,

substituting the inner expansions into

the above equation, we get :

li'i: 2_r2[2POUrO + 2e(pOurl 0 + PlOUrO)+...]

comparing the above equation to the

spherically symmetric rate of

evaporation, rh = 4x(r2p0Ur0), we get :

atr = 1, Ur0 =1

_=I+
m0 L J

From continuity in the first order

problem we have :

ml0 = P0(r)Url0(r) + Pl0(r)Ur0(r)-7-
=# mlO = (Po(1)UrlO(1) + plo(1))

Where ml0 can be found from the

solution of the energy or the species

equations for r = 1.

By substituting the second part of

the higher order expansion we get

coupled boundary value problems

that can be solved numerically.

dUrl....._! = 2 1 m 0 dT11
dr - r + ' Ur11+P0 r2 dr

+ m0T11 dP0 2u01-----!= 0 (continuity)

PO r 2 dr r

d2u011 (mo 2_dUoll l dUrll

dr 2 =t-_--r) dr r dr

4[ Ma2Pll +4(dUrll3_,dr Urll +UOll)]r

4 Urll +
r2 PO (O-momentum)

ep(PO(r)UrlO (r) + PlO(r)Uro(r))]ria =1+ .

L J



Pll __4(dU_Lll Urll+U011)all= Ma 2 3_, dr r

dall=(mo 4)dUrll 2du011dr _ r;-_rr r dr

6

_, dr +_ "uoll

(me) dur0- Tl1_ dr P0 (r- momentum)

2 ReScm 0 )d2Tll '_ Ledr 2 = r2 P0 Tll

(ReSt m0 2_ dTll
4-

Le r2-r) dr
ReSt dT 0

+_UruPo-_ (energy)

2 m o
d2Vu = _,(r-f- RaS¢ r_.__po dTo ")v

+ReScuruPo-_r ° (species)

Numerical solutions of these equations
will be reported at a later time.

In zone ( II ), the expansions for the

flow variables will be of the following
form:

O(z,O;e) = _._nfin(Z,O;e)
n---O

p(z,O;e) = _Zan_n(z,O;e)
n=O

_'(z,O;e) = ]_Sn_'n(Z,O;e)
n=O

"r(z,O;e) = _ Xn"Fn (z, O;e)
n=O

P(z,O;e) = _npn(z,O;e)
n=O

where the coefficients [3n, Otn, 8n,

Xn, and_n are, in general, 'functions

of F... To determine the first coefficient

of the above expansion, the zero th-

order solution of the inner expansion
was substituted into the radial

component of the momentum equation.
It was found that the Viscous, pressure
and convective-acceleration terms

were O(1/r5), while buoyancy effects

were O(_r). Therefore. the buoyancy

effects are negligible as long as

(1/r 4) >> e; when (1/r 4) --- e the

above assumption is no longer valid.
An outer variable (z) is introduced as a

contracted coordinate, where z = e_r.

In the leading-order momentum

equation, the density appears as a
constant. In a constant-density flow
field, the buoyancy will have no

effects on the velocity field and
therefore, the leading-order flowfield
is spherically symmetrical.

To determine the appropriate higher
order corrections for the dependent
variables in zone (II), the leading-
order composite solution was

substituted into the governing
equations. The terms were then

expanded. The momentum equation was
found to be satisfied to leading order,

with an error of O(g J_) . This suggested

that the higher order correction terms

for the flow variables in zone (II) are

0(8 _) smaller than the leading-order

terms. Thus, the coefficients then are :

_o = e_, a o = 60 = Xo= 1, rio = e

13t= e_, a t = _it= Xt = e)_ , tit = e

And the outer expansions which are
valid far away from the droplet are :



IA , rh 0
z = _r r_z0- 7

u(z,O; e)

(z,O; e)

_(z,O; E)

_(z,O; e)

_(z,O;

= _?_0 + _¾7_1+.

= 1 +_Y4_o+e_l + ....

= Y..+ _Y4_'o+ _'1 + ....

= 1+ _Yd'o+ _tl + ....

= d'o +_¾_'1+ ....

Equations for the correction terms
were derived by substituting the outer
expansions into the governing
equations and then grouping terms of
equal order of magnitude.

Solutions to the energy and "species

equations are :

To = n_,oz'_l Pn (c°sO)

'7/'° = n_o z_l Pn (c°sO)=

where Pn is Legendre polynomial

of order n.

Matching the leading order solutions:

Inner leading - order solution as r -o **

Zone (II) leading-order equations:

V._ o = 0

_to = o

_o = o

V. _o=0

_0=-_ro

as r--+ oo

uz0 -o 0

Uoo_ 0

¢ro_o

Yo-yO

In the leading-order equations, the
solution is spherically symmetric and
the effects of the buoyancy are not yet
apparent. Only the radial velocity
component is nonzero; this component
is shown below:

ur ~ rm-_2+ O(r-3)

T~ 1 -'ReSc m0 [1- (Ts- L)]+ O(r-2)
Le r

Y ~ Y** - (Y** - I)ReSc m 0 4-O(r -2)
r

L)]+O(C )p~l+ Le

m02 II ReScmO[(Ts-L)-l]}P-s;rt t_ r
+O(r -5)

Zone II leading -Order solutions as z --) 0

....
Y-Y. + E_('-_'-) + ....

....
10



Matching the two solutions gives :

Nn =Sn =0 forn > 1

if-t0 = m 0

No= ReSc m° [1-(T _L) ]
Le

V o = -ReSc mo(Y.. - 1)

The higher-order equations •

V. (_ofio + %) = 0
ReSc --_
--U-00.Vlo= _2"i"I

ReSc fio._?_' 0 = _2_' 1

vf'0 =_ +_o?0°'V0°+ M-'_'a2 e

as r -.4 oo

fir1 _ 0

rio1 _ 0

_'i -_0

Y1_0

Solutions to the energy and species
equations am :

'I'1 = _, En r_Q N O
z---ff_. Pn (cos0) - ReSc

n--0 Le 2z 2

_'1= _7 Qn - Vo
n___0zn+l Pn (cOs0)- ReSc m 0 _2z 2

where Pn is Legendre polynomial

of order n.

The continuity and the momentum

equations can be solved using a form

of a solution expressed in terms of

the stream functions :

- 1 dv m0N 0
Uz_ = _-sin0 dO + z 3

001 = 1 dv
zsin0 dz

Substituting the above equations into the
governing equationsand takingthe curlof the

momentum equationyieldsthe following:

where

sin0 i} 1z, 0(sin0 0)
The general:solution is found to be :

l_zl=\Z--T2(AI+ A2z+A3+A4z2

+N° z)cos0+ mz--_4

where AI,A2,A 3 andA4 are constants

From the principle of minimum

ll



singularity 12, it can bc concluded that

A 4 should be equal to zero. The velocity

profiles will then be as follows :

m0N0
N°z co o+

_.z_ z 4 z3

(AI A2 3N0 )u01= _ z _ z sin0

For the above solution, the first-order

velocity is unbounded as z increases,
while the leading-order velocity field

decreases as l/z 2. Eventually, as z
increases, the velocity correction term
will become as large as the leading-order

velocity term. When this happens, the
solution in zone (II) breaks down, and
more analysis is necessary. Another
zone is necessary so that the solution can
satisfy the outer boundary conditions.

Zone (III):

The now scaling .factor in this zone is
predicted from the failure of the
solution of zone (II). the expansion

equations for the this region arc:

TI = E_r

_(n,o;0 = e_6_o+ __, + ....

¢_,0;O = _+cgP0 + d6h+ ....

¢/(_,e; 8) = Y. + e_" 0 + e_Yl+ ....

_(_,e;o = t +_4o +d6%+ ....

_(_,e;0 =d'o+eV3_,+....

The leading-order equations are as
follows:

v. (_o)= o

_4o = o

O2ko = o

vP___o_oV._o+Off
Ma 2 =

15o = -4 0

as r --7 oo

0., o ---) 0

Uoo _ 0

4o-->o

_'o -_0

The solutions to the energy and species
equations are :

D n

% = _o--_ P(cose)

" Sn
Yo = Y-,_-'_ PCcose)

n=oW-

where Pn is Legendre polynomial of

order n.

Again, matching the leading- order

solutions in zone I with the leading-

order solutions in zone II, we get :

D n =S n =0 for n > 1

r_ o = r_ o = m o

Do=No= ReSc m° [1- (T,- L)]
Le

S O= V o =-ReSt me(Y=-1)

The velocity profile can be obtained
using the stream function approach :

1 d_

Ct'10= _12sine dO

t d_
t_00 =

TIsin 0 dT1
Substituting the above into the
momentum equation and taking the

12



curl yields:

where

22 sin0 _ 1

The general solution is found to be :

_0 = _Ti3

IB1 B2 )no0 = _'_ _---2B3-4B4¢12--_TI sin0

where B1,B2,B 3 and B4 are constants

From the principle of the minimum
singularity (see Van Dyke), it can be

concluded that the constant B4 should

equal to zero. The velocity profiles are as
follows:

-_TI 3 11 4 )

B2 3Do )-q 8 qsin0

As was found in zone (II), the velocity
field in zone (III) increases without

bound as T! increases. Again, this

implies that analysis of at least one
other zone is required to complete the
analysis of this problem.

DISCUSSION AND CONCLUSIONS

The nondimensionalization of the
equations produced the result that the

variable s characterizes the influence

of gravity. When e is small, the

flowfield is momentum-dominated near

the surface of a droplet, with buoyancy
subdominant. Since velocities decrease

as fluid particles travel away from the
droplet surface, buoyancy effects
eventually become as important as
momentum and viscous effects.

For e _ 0, the analysis of zone (I)

indicates that the flowfield near the

droplet surface will be spherically-
symmetrical to leading order.

Correction terms are of order e in this

zone for all variables. A result of this

analysis is the expectation that droplet
vaporization rates should increase

linearly with e so long as e << 1.

Eventually, however, as r increases,
the solution in zone (I) breaks down,

which leads to the analysis of zone (II).

In zone (II), the leading-order
solutions are spherically symmetrical,
while the correction terms include
nonzero velocities in the O-direction
that tend to turn the flow in the

direction of the gravity vector.
Eventually, as the coordinate z becomes

large in one (II), the asymptotic
correction term becomes as large in
magnitude as the leading-order term.
This is interpreted as an indication that

a stagnation point will likely exist near
the outer boundary of zone (II). To
reinforce this idea of the existence of a

stagnation point, inspection of the
solutions obtained for zone (III)
indicates that the velocities in this

zone will in general be "downward,"
that is, they will be in the direction of
the gravity vector; these downward

velocities should produce a stagnation
point along a symmetry line of the

fiowfield. Based upon the scalings
derived in this paper, the
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dimensionless radial location (rs) of

the stagnation point is expected to scale

as rs '-E "1/3. A qualitative sketch of the

expected flowfield in the vicinity of a
droplet is shown in Fig. (1). Only the
streamlines on one side of the droplet
are shown; the streamlines on the

other side are symmetrical.

As noted previously, further analysis is
required to provide a description of the
flows outside of zone (III); this
research is presently underway and
will be_reported at a later time. Based

upon previous analysesS,9,13., it is
expected that a plume-like structure
will eventually be formed below the

droplet; boundary-layer theory can
likely be used to analyze the plume
structure. However, analysis of the
transition from the flowfield near the

droplet to the plume-like flow is
expected to be challenging. A sketch of
the expected flowfleld far away from a
droplet is shown in Fig. (2). Only the
streamlines on one side of the droplet
are shown; the streamlines on the

other side are symmetrical.
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Figure 1.

E = gR/U_

Qualitative sketch of the flowfield near a gasifying droplet.

EXPECrED FLOWFIELD FAR FROM
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Figure 2. Qualitative sketch of the flowfield far from a gasifying droplet.
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